遗传学与
生物化学的关系最为密切,和其他许多生物学分支学科之间也有密切关系。例如发生遗传学和发育生物学之间的关系;行为遗传学同行为生物学之间的关系;生态遗传学同生态学之间的关系等。此外,遗传学和分类学之间也有着密切的关系,这不仅因为在分类学中应用了DNA碱基成分和染色体等作为指标,而且还因为物种的实质也必须从遗传学的角度去认识。
各个生物学分支学科所研究的是生物的各个层次上的结构和功能,这些结构和功能无一不是遗传和环境相互作用的结果,所以许多学科在概念和方法上都难于离开遗传学。例如激素的作用机制和免疫反应机制一向被看作是和遗传学没有直接关系的
生理学问题,可是现在知道前者和基因的激活有关,后者和身体中不同免疫活性细胞克隆的选择有关。
遗传学是在育种实践基础上发展起来的。在人们进行遗传规律和机制的理论性探讨以前,育种工作只限于选种和杂交。遗传学的理论研究开展以后,育种的手段便随着对遗传和变异的本质的深入了解而增加。
美国在20年代中应用杂种优势这一遗传学原理于玉米育种而取得显著的增产效果;中国在70年代把此原理成功地推广应用于水稻生产。多倍体的生长优势同样在中国得到了应用,小黑麦异源多倍体的培育成功便是一例。人工诱变也是广泛应用的育种方法之一。数量遗传学和生物统计遗传学的研究结果,被应用到动、植物选种工作中而使育种效率得以提高。这些主要是细胞遗传学时期研究成果的应用。
40年代初,抗菌素工业的兴起推动了微生物遗传学的发展,微生物遗传学的发展又推动了抗菌素工业以及其他新兴的发酵工业的进步。随着微生物遗传学研究的深入,基因调控作用的原理被成功地应用到氨基酸等发酵工业中。此外杂交转导、转化等技术的采用也增加了育种的手段。
70年代体细胞遗传学的发展进一步增加了育种的手段,包括所谓单倍体育种以及通过体细胞诱变和细胞融合的育种等。这些手段的应用将有可能大大地加速育种工作的进程。
遗传学研究同人类本身密切相关。由于人类遗传学研究的开展,特别是应用体细胞遗传学和生化遗传学方法所取得的进展,对于遗传性疾病的种类和原因已经有很多了解;产前诊断和婴儿的遗传性疾病诊断已经逐渐推广;对于某些遗传性疾病的药物治疗也在研究中。免疫遗传学是组织移植和输血等医学实践的理论基础;药物遗传学和药物学有密切的关系;毒理遗传学关系到药物的安全使用和环境保护。用遗传工程技术对遗传性疾病进行基因治疗也正在进行探索。人类遗传学研究也是优生学的基础。
遗传学研究为致癌物质的检测提供了一系列的方法。虽然目前治疗癌症还没有十分有效的方法,但在环境污染日益严重的今天能够有效地检测环境中的致癌物质,便是一个重大的进展。癌症患病的倾向性是遗传的,癌症的起因又同DNA损伤修复有关,近年来癌基因的发现进一步说明癌症和遗传的密切关系,所以从长远观点来看,遗传学研究必将为全面控制癌症作出贡献。
许多遗传学分支的研究都采用了分子遗传学手段,特别是重组DHA技术。即使是有关群体的遗传学研究也受分子遗传学的影响,进化遗传学研究中的分子进化领域便是一个例子。
近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。